Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts.
نویسندگان
چکیده
We have conducted a combined experimental and theoretical study on the optimization of hexa-peri-hexabenzocoronene (HBC) as organic semiconductor. While orientations with high electronic coupling are unfavorable in the native liquid crystalline phase of HBC, we enforced such orientations by applying external constraints. To this end, self-assembled monolayers (SAMs) were formed by a non-conventional preparation method on an Au-substrate using electrochemical control. Within these SAMs the HBC units are forced into favorable orientations that cannot be achieved by unconstrained crystallization. For simulating the charge transport we applied a recently developed approach, where the molecular structure and the charge carrier are propagated simultaneously during a molecular dynamics simulation. Experiments as well as simulations are mutually supportive of an improved mobility in these novel materials. The implication of these findings for a rational design of future organic semiconductors will be discussed.
منابع مشابه
Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration
In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...
متن کاملAre Mobilities in Hybrid Organic−Inorganic Halide Perovskites
Actually “High”? T outstanding performance of hybrid organic−inorganic perovskites (HOIPs) in photovoltaic (PV) devices is made possible by, among other things, outstanding semiconducting properties: long real charge carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime τ of ∼1 μs or more in single-crystal and polycrystalline films. Top electronic transport mat...
متن کاملHigh Performance Organic Semiconductors with High Field-Effect Mobilities and Low Contact Resistances for Flexible Displays
We have succeeded in developing high-performance ptype of organic semiconductors with phenylethynyl groups, which have high filed-effect mobilities (> 3 cm2V−1s−1) by improving molecular planarity. A single crystal of the organic semiconductors has a herringbone structure. It plays an important role for carrier transport. In addition, we found that they had lower contact resistances to Au elect...
متن کاملAre Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"?
The outstanding performance of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic devices is made possible by, among other things, outstanding semiconducting properties: long real charge-carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime, τ of ~1 μs or more in single crystal and polycrystalline films. 1–9 Top electronic transport materials will hav...
متن کاملGrain Orientation Mapping of Polycrystalline Organic Semiconductor Films by Transverse Shear Microscopy
Polycrystalline organic semiconductor films play a central role in organic electronics because their inherent order, relative to amorphous films, facilitates more efficient charge transport. Carrier mobilities in crystalline organic semiconductors are generally at least a factor of one hundred greater than in their amorphous counterparts, which is attractive for certain device applications, suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 34 شماره
صفحات -
تاریخ انتشار 2015